Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
J Med Virol ; 96(4): e29599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647039

RESUMO

Human immunodeficiency virus (HIV) infection through transfusion has been an imperative challenge for blood safety. Despite the implementation of screening strategies, there was still the residual risk of transfusion-transmitted HIV. Considering that the prevalence of HIV infection in blood donors is significant for evaluating blood safety and potential risks to the population, meta-analysis was applied to investigate the HIV prevalence among voluntary blood donors during the past 27 years to characterize the epidemiology and related risk factors of HIV in blood donors. The literature concerning the HIV screening reactive rate and prevalence in Chinese voluntary blood donors was collected through the systematic searching of four electronic databases. After integrating data, following the Preferred Reporting of Items for Systematic Reviews and Meta-Analyses guidelines, data manipulation and statistical analyses were conducted by Stata 12.0. The results indicated that overall HIV prevalence was 0.0178% (95% confidence interval [CI], 0.0169%-0.0187%) with a remarkable rise, which varied from 2000 (0.0034%) to 2015 (0.027%). The HIV window period infection rate was 0.0475‱ (95% CI, 0.0304‱-0.0646‱). Importantly, subgroup analysis revealed the heterogeneity in gender, occupations, education and donation frequency. With the effective control of HIV transmission through blood, HIV prevalence declined in China to some extent in recent years, and the characteristics of HIV epidemic in some provinces have drastically changed. However, remaining relatively high HIV prevalence and overall increased trend of HIV prevalence since the 21th century demonstrates the potential residual risk of blood transfusion, and the whole society is supposed to pay close attention to HIV infection.

2.
Hypertens Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632457

RESUMO

Around 70% of patients diagnosed with hypertension exhibit increased levels of renin. SPH3127, an inventive renin inhibitor, has shown favorable tolerability and sustained pharmacodynamic inhibitory impact on plasma renin activity (PRA) during previous phase I trials. This phase II study was conducted to investigate the efficacy and safety of SPH3127 in patients with essential hypertension. This study was conducted in patients with mild to moderate essential hypertension, utilizing a randomized, double-blind, placebo-controlled design. The patients were administered either tablet of SPH3127 at doses of 50 mg, 100 mg, or 200 mg, or a placebo. A total of 122 patients were included in the study, with 121 patients included in the full analysis set. Among these patients, there were 30 individuals in each subgroup receiving different dosage regimens of SPH3127, and 31 patients in the placebo group. The reductions in mean sitting diastolic blood pressure (msDBP) after 8 weeks compared to baseline were 5.7 ± 9.5, 8.6 ± 8.8, and 3.8 ± 10.6 mmHg in the SPH3127 50-, 100-, and 200 mg groups, respectively. In the placebo group, the reduction was 3.1 ± 8.4 mmHg. The corresponding reductions in mean sitting systolic blood pressure (msSBP) were 11.8 ± 13.0, 13.8 ± 11.2, 11.1 ± 13.1, and 7.7 ± 9.7 mmHg in each respective group. SPH3127 is a promising drug for the treatment of patients with essential hypertension. The recommended dosage is 100 mg daily.Clinical trial registration: This study was registered in ClinicalTrials.gov (NCT03756103).

3.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 284-292, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595246

RESUMO

OBJECTIVE: To investigate the correlation factors of complete clinical response in idiopathic inflammatory myopathies (IIMs) patients receiving conventional treatment. METHODS: Patients diagnosed with IIMs hospitalized in Peking University People's Hospital from January 2000 to June 2023 were included. The correlation factors of complete clinical response to conventional treatment were identified by analyzing the clinical characteristics, laboratory features, peripheral blood lymphocytes, immunological indicators, and therapeutic drugs. RESULTS: Among the 635 patients included, 518 patients finished the follow-up, with an average time of 36.8 months. The total complete clinical response rate of IIMs was 50.0% (259/518). The complete clinical response rate of dermatomyositis (DM), anti-synthetase syndrome (ASS) and immune-mediated necrotizing myopathy (IMNM) were 53.5%, 48.9% and 39.0%, respectively. Fever (P=0.002) and rapid progressive interstitial lung disease (RP-ILD) (P=0.014) were observed much more frequently in non-complete clinical response group than in complete clinical response group. The aspartate transaminase (AST), lactate dehydrogenase (LDH), D-dimer, erythrocyte sedimentation rate (ESR), C-reaction protein (CRP) and serum ferritin were significantly higher in non-complete clinical response group as compared with complete clinical response group. As for the treatment, the percentage of glucocorticoid received and intravenous immunoglobin (IVIG) were significantly higher in non-complete clinical response group than in complete clinical response group. Risk factor analysis showed that IMNM subtype (P=0.007), interstitial lung disease (ILD) (P=0.001), eleva-ted AST (P=0.012), elevated serum ferritin (P=0.016) and decreased count of CD4+T cells in peripheral blood (P=0.004) might be the risk factors for IIMs non-complete clinical response. CONCLUSION: The total complete clinical response rate of IIMs is low, especially for IMNM subtype. More effective intervention should be administered to patients with ILD, elevated AST, elevated serum ferritin or decreased count of CD4+T cells at disease onset.


Assuntos
Doenças Autoimunes , Hiperferritinemia , Doenças Pulmonares Intersticiais , Miosite , Humanos , Autoanticorpos , Miosite/diagnóstico , 60410 , Estudos Retrospectivos
4.
J Hazard Mater ; 470: 134244, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598879

RESUMO

Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.


Assuntos
Cádmio , Spirulina , Spirulina/efeitos dos fármacos , Spirulina/metabolismo , Cádmio/toxicidade , Substâncias Húmicas , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Benzopiranos/farmacologia , Antioxidantes/metabolismo , Monossacarídeos
5.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464010

RESUMO

While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.

6.
Cell Death Differ ; 31(4): 511-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365969

RESUMO

The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.


Assuntos
Isquemia Encefálica , Glutamina , Histona-Lisina N-Metiltransferase , Sirtuínas , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Glutamina/metabolismo , Camundongos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Humanos , Regiões Promotoras Genéticas/genética , Neurônios/metabolismo
7.
Nat Commun ; 15(1): 1190, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331933

RESUMO

The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.


Assuntos
Adiposidade , Glucocorticoides , Animais , Camundongos , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Obesidade/genética , Obesidade/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
8.
Ann Rheum Dis ; 83(5): 576-588, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38302261

RESUMO

OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Linfócitos B Reguladores , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Linfócitos B Reguladores/metabolismo , Fenótipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
9.
Clin Rheumatol ; 43(3): 1145-1154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326675

RESUMO

OBJECTIVES: Myositis-specific antibodies (MSAs) and myositis-associated antibodies (MAAs) are associated with distinctive dermatomyositis (DM) clinical phenotypes. The aim of this study is to explicate the clinical and immunological features of MSAs-negative DM patients. METHODS: A total of 515 individuals diagnosed with DM was screened from 2013 to 2022 and 220 DM patients were enrolled in this retrospective cohort. Clinical and laboratory data of these patients were analyzed. RESULTS: MSAs-negative DM patients were categorized into two groups: MAAs-negative (MSAs (-)/MAAs (-)) group and MAAs-positive (MSAs (-)/MAAs (+)) group. The percentage of Raynaud's phenomenon (P=0.026) was higher in the MSAs (-)/MAAs (+) DM patients than the MSAs-positive DM patients and MSAs (-)/MAAs (-) DM patients. The proportion of rapidly progressive interstitial lung disease (RP-ILD) in the MSAs-negative DM patients was lower than that in the MSAs-positive group. The MSAs (-)/MAAs (+) group had a higher proportion of organizing pneumonia and usual interstitial pneumonia (P=0.011), and elevated eosinophils in their bronchoalveolar lavage fluid (P=0.008). Counts of lymphocytes (P=0.001) and CD16+CD56+ natural killer (NK) cells (P=0.012) were higher in the MSAs-negative group. Additionally, the percentage of CD4+TNFα+ (P=0.040), CD4+IFNγ+ (P=0.037), and CD4+IL-2+ (P=0.018) cells among total CD4+ T cells were higher in the MSA-negative DM patients compared with the MSAs-positive DM patients. Besides, MSAs-negative patients demonstrated a more favorable prognosis than MSAs-positive patients. Multivariable regression analysis identified advanced onset age, higher level of carcinoembryonic antigen (CEA), and RP-ILD as risk factors for mortality in DM patients. CONCLUSIONS: Compared with MSAs-positive group, MSAs-negative DM patients suffered less from organ involvement compared with MSAs-positive group and tend to have better prognosis. Key Points MSAs-negative DM patients exhibited distinct characteristics in comparison with MSAs-positive DM patients:   • The MSAs (-)/MAAs (+) DM patients demonstrated a higher prevalence of organizing pneumonia (OP) and usual interstitial pneumonia (UIP), and elevated eosinophil counts in bronchoalveolar lavage fluid.   • CEA levels were lower in MSAs-negative patients compared with MSAs-positive patients.   • Elevated counts of lymphocytes and CD16+CD56+ NK cells were identified in the MSAs-negative patients. Additionally, proportions of CD4+TNFα+, CD4+IFNγ+, and CD4+IL-2+ cells among total CD4+ T cells were higher in the MSAs-negative DM patients compared with DM MSAs-positive DM patients.   • MSAs-negative DM patients had a more favorable prognosis than MSAs-positive DM patients. A multivariable regression analysis revealed the advanced onset age, high CEA levels, and RP-ILD were risk factors for mortality in DM patients.


Assuntos
Dermatomiosite , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Miosite , Pneumonia em Organização , Humanos , Autoanticorpos , Antígeno Carcinoembrionário , Estudos de Casos e Controles , Estudos Retrospectivos , Interleucina-2 , Fator de Necrose Tumoral alfa , Doenças Pulmonares Intersticiais/etiologia , Prognóstico , Fibrose Pulmonar Idiopática/complicações
10.
Phytomedicine ; 124: 155255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181528

RESUMO

BACKGROUND: The inflammatory cascade mediated by macrophages and T cells is considered to be an important factor in promoting the progression of rheumatoid arthritis (RA). Our previous study found that berberine (BBR) can therapeutically impact adjuvant arthritis (AA) in rats through the regulation of macrophage polarization and the balance of Th17/Treg. However, whether BBR's effects on CD4+T cells response are related to its suppression of M1 macrophage still unclear. PURPOSE: The study aimed to estimate the mechanism of BBR in regulating the immunometabolism and differentiation of CD4+T cells are related to exosome derived from M1-macrophage (M1-exo). STUDY-DESIGN/METHODS: Mice model of collagen-induced arthritis (CIA) was established to investigate the antiarthritic effect of BBR was related with regulation of M1-exo to balance T cell subsets. Bioinformatics analysis using the GEO database and meta-analysis. In vitro, we established the co-culture system involving M1-exo and CD4+ T cells to examine whether BBR inhibits CD4+T cell activation and differentiation by influencing M1-exo-miR155. Exosome was characterized using transmission electron microscopy and western blot analysis, macrophage and CD4+T cell subpopulation were detected by flow cytometry. Further, the metabolic profiles of CD4+T cells were assessed by ECAR, OCR, and the level of glucose, lactate, intracellular ATP. RESULT: BBR reinstates CD4+ T cell homeostasis and reduces miR155 levels in both M1-exo and CD4+ T cells obtained from mice with CIA. In vitro, we found exosomes are indispensable for M1-CM on T lymphocyte activation and differentiation. BBR reversed M1-exo facilitating the activation and differentiation of CD4+T cells. Furthermore, BBR reversed glycolysis reprogramming of CD4+T cells induced by M1-exo, while these regulation effects were significantly weakened by miR155 mimic. CONCLUSION: The delivery of miR-155 by M1-exo contributes to CD4+ T cell immunometabolism dysfunction, a process implicated in the development of RA. The anti-arthritic effect of BBR is associated with the suppression of glycolysis and the disruption of CD4+ T cell subsets balance, achieved by reducing the transfer of M1-exo-miR155 into T cells.


Assuntos
Artrite Experimental , Artrite Reumatoide , Berberina , MicroRNAs , Animais , Camundongos , Ratos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Berberina/farmacologia , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Macrófagos , MicroRNAs/metabolismo
11.
Cell Res ; 34(2): 140-150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182887

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Receptores de LDL , Animais , Humanos , Camundongos , Endocitose , Glicoproteínas/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/prevenção & controle , Receptores de LDL/metabolismo , Internalização do Vírus
12.
Acta Pharmacol Sin ; 45(3): 558-569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37903897

RESUMO

Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Ratos , Camundongos , Animais , Cobre/metabolismo , Cobre/farmacologia , Regulação para Cima , Células Endoteliais/metabolismo , Epigênese Genética , Células Cultivadas , Angiopatias Diabéticas/etiologia , Glucose/metabolismo , Endotélio Vascular
13.
Transl Res ; 264: 85-96, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37879562

RESUMO

Diabetic nephropathy (DN) is one of the complications of diabetes. Long-term hyperglycemia in the kidney results in renal insufficiency, and eventually leads to end-stage renal disease. Epigenetic factor ASH2L has long been identified as a transcriptional activator, and we previously indicated that ASH2L aggravated fibrosis and inflammation in high glucose-induced glomerular mesangial cells, but the pathophysiological relevance and the mechanism of ASH2L-mediated H3K4me3 in DN is not well understood. Here we demonstrated that ASH2L is upregulated in glomeruli isolated from db/db mice. Loss of ASH2L protected glomerular injury caused by hyperglycemia, as evidenced by reduced albuminuria, preserved structure, decreased glomerular extracellular matrix deposition, and lowered renal glomerular expression of proinflammatory and profibrotic markers in db/db mice. Furthermore, we demonstrated that enrichment of ASH2L-mediated H3K4me3 on the promoter regions of ADAM17 and HIPK2 triggered their transcription, leading to aberrant activation of Notch1 signaling pathway, thereby contributing to fibrosis and inflammation in DN. The findings of this study provide compelling evidence for targeting ASH2L as a potential therapeutic strategy to prevent or slow down the progression of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Histonas , Hiperglicemia , Animais , Camundongos , Diabetes Mellitus/patologia , Nefropatias Diabéticas/tratamento farmacológico , Fibrose , Hiperglicemia/metabolismo , Inflamação/patologia , Rim/patologia
14.
Bioresour Technol ; 394: 130273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160851

RESUMO

Four kinds of Fe/N co-doped porous hydrochar were prepared by one/two-step N-doping schemes using microwave/traditional pyrolysis methods for removing Cr(VI) from aqueous phase. Heterocyclic-N was introduced through CO(NH2)2-based hydrothermal carbonization process, which could adjust the electronic structure of the hydrochar framework. Furthermore, Fe0 and Fe3O4 were embedded into hydrochar via carbothermal reduction reaction using FeCl3 as the precursor, which improved the reducibility and magnetism of the material. The modified hydrochar exhibited pH-dependency and rapid kinetic equilibrium, and the maximal adsorption amount of magnetic porous hydrochar obtained by microwave-assisted one-step N-doping (MP1HCMW) reached 274.34 mg/g. Meanwhile, the modified hydrochar had a high tolerance to multiple co-existing ions and the removal efficiency maintained above 73.91 % during five regeneration cycles. Additionally, MP1HCMW efficiently removed Cr(VI) via pore filling, electrostatic attraction, ion exchange, reduction, complexation, and precipitation. Summarily, Fe/N co-doped porous hydrochar was a feasible adsorbent with outstanding remediation potential for Cr(VI)-contaminated water.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Porosidade , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cromo/química , Cinética , Fenômenos Magnéticos
15.
Vet Microbiol ; 288: 109954, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104440

RESUMO

Clinically, Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality. However, the mechanism of PCV2 and G. parasuis serotype 4 (GPS4) co-infection is still not fully understood. In this study, swine tracheal epithelial cells (STEC) were used as a barrier model, and our results showed that PCV2 infection increased the adhesion of GPS4 to STEC, while decreasing the levels of ZO-1, Occludin and increasing tracheal epithelial permeability, and ultimately facilitated GPS4 translocation. Snail1 is a transcriptional repressor, and has been known to induce epithelial-to-mesenchymal transition (EMT) during development or in cancer metastasis. Importantly, we found that Snail1, as a transcriptional repressor, was crucial in destroying the tracheal epithelial barrier induced by PCV2, GPS4, PCV2 and GPS4 coinfection. For the first time, we found that PCV2, GPS4, PCV2 and GPS4 coinfection cross-activates TGF-ß and p38/MAPK signaling pathways to upregulate the expression of Snail1, down-regulate the levels of ZO-1 and Occludin, and thus disrupt the integrity of tracheal epithelial barrier then promoting GPS4 translocation. Finally, PCV2 and GPS4 co-infection also can activate TGF-ß and p38/MAPK signaling pathways in vivo and upregulate Snail1, ultimately down-regulating the expression of ZO-1 and Occludin. Our study elucidates how PCV2 infection promotes GPS4 to breach the tracheal epithelial barrier and aggravate clinical manifestations.


Assuntos
Infecções por Circoviridae , Circovirus , Coinfecção , Doenças dos Suínos , Suínos , Animais , Circovirus/fisiologia , Coinfecção/microbiologia , Coinfecção/veterinária , Ocludina , Sorogrupo , Junções Intercelulares/patologia , Fator de Crescimento Transformador beta , Epitélio/patologia , Infecções por Circoviridae/veterinária
16.
Small ; : e2309457, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150624

RESUMO

Highly efficient and durable Pt electrocatalysts are the key to boost the performance of fuel cells. The high-index facets (HIF) Pt nanocrystals are regarded as excellent catalytic activity and stability catalysts. However, nucleation, growth and evolution of high-index facets Pt nanocrystals induced by defective sites is still a challenge. In this work, tetrahexahedron (THH) and hexactahedron (HOH) Pt nanocrystals are synthesized, which are loaded on the nitrogen-doped reduced graphene oxide (N-rGO) support of the integrated electrodes by the square wave pulse method. Experimental investigations and density functional theory (DFT) calculations are conducted to analyze the growth and evolution mechanism of HIF Pt nanocrystals on the graphene-derived carbon supports. It shows that the H adsorption on the N-rGO/CFP support can induce evolution of Pt nanocrystals. Moreover, the N-defective sites on the surface of N-rGO can lead to a slower growth of Pt nanocrystals than that on the surface of reduced graphene oxide (rGO). Pt/N-rGO/CFP (20 min) shows the highest specific activity in methanol oxidation, which is 1.5 times higher than that of commercial Pt/C. This research paves the way on the design and synthesis of HIF Pt nanocrystal using graphene-derived carbon materials as substrates in the future.

17.
BMJ Open ; 13(11): e071253, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918920

RESUMO

OBJECTIVES: The optimal puncture technique for neuraxial anaesthesia in different populations is unclear. We sought to obtain data from randomised controlled trials comparing the impact of ultrasound-guided technology and traditional positioning technology on the success rate of neuraxial anaesthesia. DESIGN: Systematic review and network meta-analysis using study populations, interventions, intervention comparisons, outcome measures and study types. DATA SOURCES: PubMed, Embase, Cochrane Library and Web of science were searched until 31 September 2022. ELIGIBILITY CRITERIA: We included randomised controlled trials comparing three types of neuraxial anaesthesia: ultrasound-assisted, ultrasound real-time guidance and conventional positioning to describe which neuraxial anaesthesia modality is best for patients and to recommend the appropriate one for different populations. DATA EXTRACTION AND SYNTHESIS: Five independent reviewers retrieved, screened and edited included studies using standardised methods. Assess risk of bias using the Cochrane Collaboration and Evidence Project tools. Network meta-analysis was performed using STATA V.15 statistical software. RESULTS: Twenty-two studies containing three different interventions were included. The SUCRA values of first-pass success rates for the three neuraxial anaesthesia methods were real-time guidance (82.8%), ultrasound-assisted (67.1%) and traditional positioning (0.1%). Both ultrasound techniques improved first-pass success rates compared with traditional localization, but there was no significant difference between the two. Subgroup analysis showed that the use of real-time ultrasound guidance for neuraxial anaesthesia in pregnant and patients with obesity improved first-pass success rates. Ultrasound-assisted technology can improve first-attempt success rates in older patients with abnormal lumbar spine anatomy. CONCLUSION: Compared with conventional positioning, ultrasound guidance technology can improve the first-pass success rate of neuraxial anaesthesia, but there is no significant difference between ultrasound-assisted and real-time guidance technology. The results of subgroup analysis tell us that the most suitable neuraxial anaesthesia method is different for different groups of people. PROSPERO REGISTRATION NUMBER: PROSPERO number: CRD42022376041.


Assuntos
Anestesia Epidural , Punção Espinal , Humanos , Idoso , Metanálise em Rede , Anestesia Epidural/métodos , Vértebras Lombares , Ultrassonografia de Intervenção/métodos
18.
Front Microbiol ; 14: 1263917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033565

RESUMO

The gut microbiota plays an essential role in maintaining the health and fitness of the host organism. As a critical environmental variable, temperature exerts significant effects on animal survival and reproduction. Elevated temperatures can influence the composition and function of the animal gut microbiota, which may have potentially detrimental effects on the host. The crocodile lizard (Shinisaurus crocodilurus) is an ancient and currently endangered reptile species due to human hunting and habitat destruction. Given the predicted shifts in global temperatures in the next century, it is important to understand how warming affects the gut microbiota of these vulnerable lizards, which remains unclear. To determine how the microbial communities change in crocodile lizards in response to warming, we analyzed the gut microbiota under five temperature conditions (22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput sequencing. Results showed that the dominant phyla, Proteobacteria and Bacteroidetes, in gut microbiota were not significantly affected by temperature variations, but increasing temperature altered the structure and increased the community richness of the gut microbiota. In addition, warming changed the abundance of Pseudomonas aeruginosa and Actinobacteria, which may have negative effects on the physiological health of the crocodile lizards. Functional prediction analysis demonstrated that the functional pathways enriched in crocodile lizards were mainly related to metabolism, with no significant differences observed in these pathways at KEGG pathway level 1 after warming. These results provide valuable insights into the ecological adaptations and regulatory mechanisms employed by crocodile lizards in response to warming, which may be of benefit for their conservation.

19.
J Phys Chem A ; 127(43): 9013-9021, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875015

RESUMO

Intramolecular hydrogen bonds (H-bonds) are abundant in physicochemical and biological processes. The strength of such interaction is governed by a subtle balance between conformational flexibility and steric effect that are often hard to predict. Herein, using linear aminoalcohols NH2(CH2)nOH (n = 2-5) as a model system, we demonstrated the dependence of intramolecular H-bond on the backbone chain length. With sensitive photoacoustic Raman spectroscopy (PARS), the gas-phase Raman spectra of aminoalcohols were measured in both N-H and O-H stretching regions at 298 and 338 K and explained with the aid of quantum chemistry calculations. For n = 2-4, two conformers corresponding to the O-H···N intramolecular H-bond and free OH were identified, whereas for n = 5, only the free-OH conformer was identified. Compared to free OH, a striking spectral dependence was observed for the intramolecular H-bonded conformer. According to the red shift of the OH-bonded band, the strongest intramolecular H-bond yields in n = 4, but the favorable chain length to form an intramolecular hydrogen bond at room temperature was observed in n = 3, which corresponds to a six-membered-ring in 3-aminopropanol. This is in good agreement with statistical analysis from the Cambridge Structural Database (CSD) that the intramolecular hydrogen bond is preferred when the six-membered ring is formed. Furthermore, combined with the calculated thermodynamic data at the MP2/aug-cc-pVTZ//M062X/6-311++G(d,p) level, the origin of decrease in intramolecular hydrogen-bond formation was ascribed to an unfavorable negative entropy contribution when the backbone chain is further getting longer, which results in the calculated Gibbs free energy optimum changing with increasing temperature from n = 4 (0-200 K) to n = 3 (200-400 K) and to n = 2 (above 400 K). These results will provide new insight into the nature of intramolecular hydrogen bonds at the molecular level and the application of intramolecular hydrogen bonds in rational drug design and supramolecular assembly.

20.
Front Immunol ; 14: 1240859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828991

RESUMO

Introduction: Intrathymic T-cell development is a coordinated process accompanied by dynamic changes in gene expression. Although the transcriptome characteristics of developing T cells in both human fetal and postnatal thymus at single-cell resolution have been revealed recently, the differences between human prenatal and postnatal thymocytes regarding the ontogeny and early events of T-cell development still remain obscure. Moreover, the transcriptional heterogeneity and posttranscriptional gene expression regulation such as alternative polyadenylation at different stages are also unknown. Method: In this study, we performed integrative single-cell analyses of thymocytes at distinct developmental stages. Results: The subsets of prenatal CD4-CD8- double-negative (DN) cells, the most immature thymocytes responsible for T-cell lineage commitment, were characterized. By comprehensively comparing prenatal and postnatal DN cells, we revealed significant differences in some key gene expressions. Specifically, prenatal DN subpopulations exhibited distinct biological processes and markedly activated several metabolic programs that may be coordinated to meet the required bioenergetic demands. Although showing similar gene expression patterns along the developmental path, prenatal and postnatal thymocytes were remarkably varied regarding the expression dynamics of some pivotal genes for cell cycle, metabolism, signaling pathway, thymus homing, and T-cell commitment. Finally, we quantified the transcriptome-wide changes in alternative polyadenylation across T-cell development and found diverse preferences of polyadenylation site usage in divergent populations along the T-cell commitment trajectory. Discussion: In summary, our results revealed transcriptional heterogeneity and a dynamic landscape of alternative polyadenylation during T-cell development in both human prenatal and postnatal thymus, providing a comprehensive resource for understanding T lymphopoiesis in human thymus.


Assuntos
Timócitos , Timo , Gravidez , Feminino , Humanos , Timo/metabolismo , Diferenciação Celular/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...